Mathematics Teaching Sequence - Year 3

Children should engage with appropriate number and practical problems throughout each topic.

Statements highlighted in yellow have been identified as 'ready to progress' objectives: key concepts which are essential building blocks for the next steps in learning. These objectives must be embedded across the year so that children are fluent.
Resources to support teaching of these specific objectives can be found here:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file /1017683/Maths guidance KS 1 and 2.pdf
https://www.ncetm.org.uk/classroom-resources/exemplification-of-ready-to-progress-criteria/

Year 3	
Autumn Term	Key vocab for topic
Number and Place value - Count from 0 in multiples of 100 - Identify, represent and estimate numbers using different representations (part whole, estimate on number line, partition) - Recognise the place value of each digit in a three-digit number (partition). - Know that ten 10 s are equivalent to 100. Apply this to work out how many 10 s there are in other 3 digit multiples of 10. - Read and write numbers up to 1000 in numerals and in words - Reason about the location of any 3 digit number, including finding the previous and next multiple of 10 or 100 from a given number (100 or 10 more or less) and crossing hundreds and tens boundaries, eg 10 less than 204. - Compare and order numbers up to 1000 - Count from zero in multiples of 50 . Place value review	hundreds tens ones place value more less greater than less than compare equal to order estimate exchange partition Multiples Digits Estimate
Addition and subtraction (Include appropriate problem solving and reasoning using learnt number facts, place value and methods throughout e.g. missing numbers, 2 step word problems, explain and prove) - Add and subtract a three digit number and ones mentally - Add and subtract a 3 digit number and 10 s mentally - Add and subtract a 3 digit number and 100 s mentally - Add numbers with up to 3 digits:	more than less than digits addition/add subtraction/subtract/take away combine total mental mentally column exchange place value

> -Use concrete and pictorial resources to introduce methods of addition with up to 3 digits without crossing the tens/hundreds boundary (to develop conceptual understanding)
> -Use formal written method of column addition without crossing tens/hundreds boundary

-Use concrete and pictorial resources to introduce conceptual understanding methods of addition with up to 3 digits crossing the tens/hundreds boundary (to develop conceptual understanding)

- Calculate the complements to 100 e.g. 46 + ? = 100.
- Use formal written method of column addition crossing tens/hundreds boundary
- Scale known addition number facts by 10 e.g. $8+6=14$ so $80+60=140$.
- Subtract numbers with up to 3 digits: -Use concrete and pictorial resources to introduce methods of subtraction with up to 3 digits without exchange (to develop conceptual understanding) -Use formal written method of column subtraction without exchange -Use concrete and pictorial resources to introduce conceptual understanding of subtraction with up to 3 digits with exchange -Use formal written method of column subtraction with exchange
- Scale known addition number facts by 10 to subtract e.g. $3+6=9$ so $90-60=30$
- Use inverse operations to check answers to addition and subtraction calculations applying knowledge of the commutative law.

Review - addition and subtraction deciding most efficient method (mental/formal)

Multiplication/division

- Count from zero in multiples of 3, 4 and 8
- Recognise when groups are equal/unequal
- To know that multiplication is repeated addition in equal groupings
- Recall the multiplication facts for the 3 times table
hundreds
tens
ones
smallest
altogether
sum
calculation
find the difference
Inverse
Commutative
estimate
inverse
approximate/ly
nearest (hundred, ten)
part/whole
Number bonds

Multiplication/ times/ lots of/ groups
of/product/repeated addition
Division/share equal/repeated
subtraction
Divisor
Share equally
Array
Commutative
Inverse
Estimate
Remainder

- To know that division is splitting a whole number into groups of equal size
- Recall the division facts for the 3 times table
- Recall the multiplication facts for the 4 times table
- Recall the division facts for the 4 times table
- Recall the multiplication facts for the 8 times table
- Recall the division facts for the 8 times table
- To know that not all numbers can be divided equally and this might result in a remainder
- Use knowledge of $2,5,10,3,4$ and 8 times tables (multiplication and corresponding division facts) to solve problems including with simple remainders.

Measures (lengths)

- To know that there are 10 mm in 1 cm
- To know that there are 100 cm in 1 m
- Measure (read) lengths in millimetres, centimetres and metres
- To compare and order lengths when represented in different ways (eg 23 cm and 34 mm)
- To add and subtract units of length

Scaling

Cm

Mm
Convert
Exchange
Equivalent
Equal to
Compare
Order
Greater than
Less than
Standard units

Spring Term

Place value review and approximation

- Estimate the answer to addition and subtraction using approximation $67+31$ is approximately 100

Multiplication and division

- To understand when a statement represents a multiplication or a division problem and show and show how these are related
- Multiply a 2-digit number by a 1 digit number using known facts eg 23×3
$3 \times 3=9$
$20 \times 3=60$
$23 \times 3=69$
- Apply place value knowledge to known facts e.g. scale number facts by 10.
E.g. $3 \times 4=12$;
$30 \times 4=120$

Estimate
Total
Subtract
Add
Commutative
Inverse
Approximately

Multiplication/ times/ lots of/ groups
of/product/repeated addition
Division/share equal/repeated
subtraction
Divisor
Share equally
Array
Commutative
Inverse
Estimate
Remainder
Scaling

$$
\begin{aligned}
& 12 \div 4=3 \\
& 120 \div 4=30
\end{aligned}
$$

- Multiply a 2 digit number by a 1 digit number using expanded method
- Multiply a 2 digit number by a 1 digit number using compact method (short multiplication)
- Use the inverse to check multiplication and division problems
- Divide 2 digit numbers by 1 digit numbers using partitioning e.g example $69 \div 3$
$60 \div 3=20$
$9 \div 3+3$
$69 \div 3=23$
- Use partitioning/rearranging and knowledge of known multiples to solve 2 digit divided by 1 digit calculations (see calculation policy)

Review

Statistics

- To know that a pictogram represents data in pictures and that a picture can represent more than 1
- To interpret data on a pictogram (including using keys when the picture represents more than 1) (including answering questions which uses addition and subtraction (how many more...))
- To present data in a pictogram including when the picture represents more than 1)
- Read scales of 2,5,10 and 4 intervals.
- To understand how information is represented in a bar chart, including in scales of $2,5,10$ and 4.
- To interpret information presented in a bar chart
- To present information in a bar chart, selecting appropriate scales

Fractions

- Interpret and write proper fractions to represent 1 or parts of a whole (that is divided into equal parts) by:
- Knowing, recognising and writing a unit fraction of a whole shape)
- Finding unit fraction of a whole set of objects/amount/quantities using known division facts.
- To know, recognise and write non-unit fractions of a whole shape

Column multiplication
Short multiplication
Partitioning

Pictogram

Data

Represent
Most common
Least common
Scale
Bar chart
Interpret
Present
Table
Tally
Compare
X-axis
Y-axis
Frequency
Carrol diagram
Venn diagram

Fraction

Denominator
Numerator
Equal
Equivalent
Quarters
Halves
Unit fraction
Non-unit fractions
Amount
Whole

- To find a non-unit fraction of a whole set of objects/ amount
- To make a whole using unit and non-unit fractions with the same denominator
- Recognise that tenths arise from dividing an object into 10 equal parts
- Count up and down in tenths up to and beyond a whole
- Recognise that tenths arise from dividing 1 digit numbers or quantities by 10 , representing this in a division sentence

Fractions

- Recognise and show, using diagrams, equivalent fractions with small denominators
- Reason about the location of any fraction within 1 by comparing and ordering unit fractions
- Reason about the location of any fraction within 1 by comparing and ordering fractions with the same denominator.
- Add and subtract fractions with the same denominator within one whole
- Solve problems involving fractions

Review

Summer Term

Money

- Know that total of money can be shown in notes and coins and recorded in pounds and pence
- Find total of money shown in notes and coins and record in pounds and pence.
- Convert between pounds and pence (e.g. five 20 p coins $=£ 1,205$ p coins $=£ 1$
- Add and subtract amounts of money using pound and pence
- Solve addition and subtraction money problems including giving change

Angles and properties of shape

- Identify and draw horizontal and vertical lines
- Identify and draw pairs of perpendicular and parallel lines, including finding these in 2d shapes
- Draw 2d shapes
- Measure the perimeter of simple 2d shapes
- Recognise that angles are a property of shape or a description of turn

Tenth

Fraction

Denominator/Numerator
Equal/ Equivalent
Quarters
Halves
Unit fraction
Non-unit fractions
Amount
Whole
Tenth

Pounds
Pence
Convert
Order
Add
Subtract
Change
Round
Estimate
Cost
Decimal point
Calculate

Horizontal/ Vertical
Perpendicular/ Parallel
2d shape/3d shape
Perimeter
$\mathrm{Cm} / \mathrm{Mm}$
Turn/Angles
Right angle
Degrees

- Identify right angles and know that this is a quarter turn.
- Identify right angles in 2D shapes presented in different orientations.
- Recognise that 2 right angles make a half-turn, three make three quarters of a turn and 4 make a complete turn
- Identify whether angles are greater or less than a right angle

Review

Time

- To know the number of seconds in a minute, and the number of days in each month, year and leap year.
- Tell and write the time from a 12 hour analogue clock
- Tell and write the time from a 12 hour analogue clock using Roman Numerals
- Tell and write the time from an analogue 24 hour clock (using correct vocabulary of am, pm, morning, afternoon, noon and midnight)
- Estimate and read time with increasing accuracy to the nearest minute
- Compare duration of events (eg calculate the time taken by particular events or tasks)
- Record and compare time in terms of seconds, minutes and hours

Statistics - Tables

- Interpret information presented in a table (including using addition and subtraction to answer questions, comparing and ordering and working out duration)
- Present information in a table

Review

Measure - mass and capacity

- Know how to read a scale of different intervals
- To know that grams is a smaller measure of mass than kilograms and that there are 1000 grams in a kilogram
- Use scales to measure mass in grams and kilograms
- Represent mass in kilograms and grams (eg 1240 grams $=1 \mathrm{~kg}$ and 240grams)
- Compare mass in kilograms and grams
- Solve mass problems using the 4 operations

Half turn, Three quarter turn, Full/complete turn
Greater than/Less than
Symmetry/symmetrical
Classify
Regular/irregular
Vertex/vertices
Faces/ sides
Acute/obtuse
Orientation

Seconds

Minutes
Hours
24 hour/12 hour clock
Hands
Analogue
Am/pm
To/past
Half past
Quarter to/from
O'clock
Morning, noon, afternoon and midnight Digital

Table
Tally
Interpret
Compare
Order
Fractions

Kg / g

Mass
Scales
Compare
Smaller larger
Millilitres and litres
Capacity

- Know that millilitres are a smaller measure than litres and that there are 1000 ml in 11 .
- Measure in litres and millilitres using different scale intervals
- Represent capacity in litres and millilitres
- Compare capacity in litres and millilitres
- Solve capacity problems using the 4 operations

3d shapes

- Recognise and describe properties of 3d shapes
- Recognise 3d shapes in different orientations and describe them
- Construct 3d shapes using eg using nets and modelling materials

3d
2d
Faces
Vertices
Nets
Orientations

Yearly assess and review

Facts (Declarative knowledge)

Number and Place value

- Count from 0 in multiples of 100
- Identify numbers using different representations (part whole, estimate on number line, partition)

Addition and subtraction

- Know that concrete and pictorial can be used to aid addition and subtraction.
- Know that formal methods can be used for written addition and subtraction.

Approximation and checking using addition and subtraction

- Know that estimation and inverse operations can be used to check answers to addition and subtraction calculations.

Multiplication/division

- Know when groups are equal/unequal
- To know that multiplication is repeated addition in equal groupings
- Recall the multiplication facts for the 3 times table
- Know that division is splitting a whole number into groups of equal size
- Recall the multiplication and division facts for the 3,4 and 8 times table

Processes (methods)

Number and Place value

- Count from 0 in multiples of 100
- Represent and estimate numbers using different representations
- Recognise the place value of each digit in a three-digit number (partition)
- Read and write numbers up to 1000 in numerals and in words
- Find 100 or 10 more or less than a given number (including crossing hundreds and tens boundaries, eg 10 less than 204)
- Compare and order numbers up to 1000
- Count in zeros in multiples of 50

Addition and subtraction

- Add and subtract a three digit number and 100s/tens/ones mentally.
- Use concrete, pictorial then formal written method of addition up to 3 digits without (then with) crossing tens/hundreds boundary.
- Subtract (using concrete, pictorial and formal written method) up to 3 digits without (then with) exchange.

Approximation and checking using addition and subtraction

- Estimate the answer to addition and subtraction using approximation $67+$ 31 is approximately 100
- Use inverse operations to check answers to addition and subtraction calculations.

Multiplication/division

- Count from zero in multiples of 3,4 and 8
- Use knowledge of $2,5,10,3,4$ and 8 times tables (multiplication and division facts) to solve problems including with simple remainders
- To know that not all numbers can be divided equally and this might result in a remainder

Spring Term

Measures (lengths)

- To know that there are 10 mm in 1 cm and 100 cm in 1 m

Multiplication and division

- Know when a statement represents a multiplication or a division problem and show and show how these are related
- Know that multiplication can use a expanded or compact method.
- Know that division can involve partitioning/rearranging using knowledge of multiples.

Statistics

- To know that a pictogram represents data in pictures and that a picture can represent more than 1
- To understand how information is represented in a bar chart, including in scales of 2,5 and 10

Fractions

- To know, recognise and write a unit fraction in shapes
- To know, recognise and write non-unit fractions of a shape

Measures (lengths)

- Measure (read) lengths in millimetres, centimetres and metres
- To compare and order lengths when represented in different ways (eg 23 cm and 34 mm)
- To add and subtract units of length

Multiplication and division

- Use the inverse to check multiplication and division problems
- Multiply a 2-digit number by a 1digit number using known facts
- Multiply a 2 digit number by a 1 digit number using expanded and compact method (short multiplication)
- Divide 2 digit numbers by 1 digit numbers using partitioning e.g example
- Solve 2 digit divided by 1 digit calculations (see calculation policy)

Statistics

- To interpret data on a pictogram (including using keys when the picture represents more than 1) and a bar chart (including answering questions which use addition and subtraction
- Present data in a pictogram including when the picture represents more than 1) and bar charts, selecting appropriate scales.

Fractions

- Interpret and write proper fractions to represent 1 or parts of a whole (that is divided into equal parts) by:
- To find a unit fraction of a set of objects/amount

- Know that tenths arise from dividing an object into 10 equal parts - Know that tenths arise from dividing 1 digit numbers or quantities by 10 , representing this in a division sentence - Recognise and show, using diagrams, equivalent fractions with small denominators	- To find a non-unit fraction of a set of objects/ amount - To make a whole using unit and nonunit fractions with the same denominator - Count up and down in tenths up to and beyond a whole - Recognise and show, using diagrams, equivalent fractions with small denominators - Compare and order unit fractions - Compare and order fractions with the same denominators - Add and subtract fractions with the same denominator within one whole - Solve problems involving fractions
Summer Term	
Money - Know that total of money can be shown in notes and coins and recorded in pounds and pence	Money - Find total of money shown in notes and coins and record in pounds and pence. - Convert between pounds and pence (e.g. five 20 p coins $=£ 1,205 p$ coins $=$ £1 - Add and subtract amounts of money using pound and pence - Solve addition and subtraction money problems including giving change
Angles and properties of shape - Identify horizontal and vertical lines, parallel and perpendicular lines. - Recognise that angles are a property of shape or a description of turn - Identify right angles and know that this is a quarter turn. - Recognise that 2 right angles make a half-turn, three make three quarters of a turn and 4 make a complete turn - Identify whether angles are greater or less than a right angle	Angles and properties of shape - Draw horizonal and vertical lines and pairs of perpendicular and parallel lines, including finding these in 2d shapes - Draw 2d shapes - Measure the perimeter of simple 2d shapes
Time - To know the number of seconds in a minute, and the number of days in each month, year and leap year.	Time - Tell and write the time from a 12 hour analogue clock (and using Roman numerals). - Tell and write the time from an analogue 24 hour clock (using correct

Statistics - Tables - Know that information can be presented in a table.	vocabulary of am, pm, morning, afternoon, noon and midnight) - Estimate and read time with increasing accuracy to the nearest minute - Compare duration of events (eg calculate the time taken by particular events or tasks) - Record and compare time in terms of seconds, minutes and hours Statistics - Tables - Interpret information presented in a table (including using addition and subtraction to answer questions, comparing and ordering and working out duration)
Measure - mass and capacity - Know how to read a scale of different intervals - To know that grams is a smaller measure of mass than kilograms and that there are 1000 grams in a kilogram - Know that millilitres are a smaller measure than litres and that there are 1000 ml in 11 . - Measure in litres and millilitres using different scale intervals	Measure - mass and capacity - Use scales to measure mass in grams and kilograms - Represent mass in kilograms and grams (eg 1240 grams $=1 \mathrm{~kg}$ and 240 grams) - Compare mass in kilograms and grams - Solve mass problems using the 4 operations - Represent and compare capacity in litres and millilitres - Solve capacity problems using the 4 operations
3d - shapes - Recognise and describe properties of 3d shapes - Recognise 3d shapes in different orientations and describe them	3d - shapes - Construct 3d shapes using eg using nets and modelling materials

